
Defence R&D Canada – Atlantic

DEFENCE DÉFENSE
&

Sonar 3 VMSA Federate

User Guide and Technical Description

Allan Gillis

Technical Memorandum

DRDC Atlantic TM 2005-286

April 2007

Copy No. _____

Defence Research and
Development Canada

Recherche et développement
pour la défense Canada

This page intentionally left blank.

Sonar 3 VMSA Federate
User Guide and Technical Description

Allan Gillis

Defence R&D Canada – Atlantic
Technical Memorandum
DRDC Atlantic TM 2005-286
April 2007

DRDC Atlantic TM 2005-286 i

Abstract

This federate provides a medium fidelity sonar model for Virtual Maritime Systems Architecture
(VMSA) high level architecture (HLA) simulations. The model best represents towed array
systems, but can be configured to model flank arrays as well. The Sonar model is coupled with
an auto-detector/signal follower that creates VMSA Sonar tracks without an operator.

While the federate is written in Java, the signal follower is provided only as a compiled Windows
DLL. This limits the federate to the Windows operating system, either Windows 2000 or XP.

This document describes the federate software, how to use it, and how to integrate the federate
into DRDC Atlantic’s VMSA execution system. As well, the software design and technical
details are explained.

This document covers version 3.0.1 of the Sonar federate.

Résumé

La composante visée ici (« le fédéré ») constitue un modèle sonar de fidélité moyenne pour les
simulations d’architecture HLA VSMA (architecture virtuelle des systèmes maritimes). Le
meilleur modèle représente des systèmes de réseaux remorqués, mais il peut être configuré pour
modéliser également des réseaux de flanc. Le modèle sonar est couplé à un autodétecteur/suiveur
de signal qui crée des pistes sonar VMSA, sans opérateur.

Bien que le fédéré soit écrit en Java, le suiveur de signal est fourni seulement en DLL Windows
compilé, ce qui limite le fédéré au système d’exploitation Windows, soit Windows 2000 ou XP.

Le présent document décrit le fédéré, son utilisation et la façon de l’intégrer au système
d’exécution VSMA de RDDC Atlantique. En outre, il explique la conception du fédéré et les
détails techniques qui s’y rapportent.

Le présent document couvre la version 3.0.1 de la composante logicielle.

ii DRDC Atlantic TM 2005-286

This page intentionally left blank.

DRDC Atlantic TM 2005-286 iii

Executive summary

Report title
Gillis, A. D.; 2006; Sonar 3 VMSA Federate: User guide and technical description; DRDC
Atlantic TM 2005-286; Defence R&D Canada - Atlantic; Unclassified.

Background

The Virtual Maritime Systems Architecture (VMSA) is a framework for distributed simulations
in the maritime environment, based on the High Level Architecture (HLA). VMSA was
originally developed by the Australian Defence Science and Technology Organisation (DSTO)
and is now in use by all of The Technical Co-operation Program (TTCP) countries including
Canada.

From the Canadian perspective, sonar is a key federate in almost any simulation of the maritime
domain. This version of the sonar federate represents the second sonar federate contributed by
Canada to TTCP. The first, Sonar 2.0, was a relatively low fidelity model based on the sonar
equations and truth data. It produced bearings only tracks already classified as to surface or
subsurface. While Sonar 2 was adequate for many simulation tasks, there was room for
considerable improvement.

Sonar 3 makes several small improvements to the underlying simulation for Sonar 2, and
introduces a major change in the way tracks are produced. These changes also make Sonar 3 a
much better simulation for flank and towed arrays.

Principal results

Sonar 3 significantly improves the fidelity of the Sonar 2 simulation by treating the signatures of
targets in the ocean environment as signals that arrive at a sonar array. The signature data of each
possible target is added to the beam map of the array, which is then populated with noise data.

The simulated beam map is passed to an external dynamic link library (DLL) that analyses the
data, makes detections, and creates tracks (signal followers). Any DLL that implements the same
interface can now be used to handle detections and tracks, which makes Sonar 3 a potential
platform for testing new algorithms within a simulation environment.

The model used for Sonar 3 best represents towed and flank array systems.

Significance of results

Sonar 3 provides a good fidelity sonar model for sonar arrays within the VMSA. The separation
of the detection and tracking code into a separate DLL provides a flexible system for testing
detection and tracking algorithms in a simulated environment.

iv DRDC Atlantic TM 2005-286

Future work

It is intended that the next sonar federate will include several enhancements to the sonar
modelling, user interface, and the software architecture. In particular:

• Shipping noise and surface noise tables to be loaded from text files,

• Handle the characterisation of passive signatures more consistently,

• Include a graphical user interface (GUI) to show the data generated for the beam maps
and allow an operator to manually mark and drop tracks,

• Include at least a basic active sonar capability,

• Allow multiple systems to be modelled by a single instance of the federate,

• Move many of the generally useful classes from this federate into the existing VCS utility
class library for re-use in other projects.

DRDC Atlantic TM 2005-286 v

Sommaire

Titre de rapport
Gillis, A. D.; 2006; Sonar 3 VMSA Federate: User guide and technical description [Fédéré
VSMA Sonar 3 : guide d’utilisation et description technique]; RDDC Atlantique TM 2005-
286; R & D pour la défense Canada - Atlantique; non classifié.

Situation générale

L’architecture virtuelle des systèmes maritimes (VMSA) offre un cadre pour des simulations
distribuées en milieu maritime, basé sur l’architecture HLA. Initialement développée par la
Defence Science and Technology Organisation (DSTO) d’Australie, la VMSA est maintenant
utilisée par tous les pays du Technical Co-operation Program (TTCP), y compris le Canada.

Du point de vue canadien, le fédéré sonar est un élément clé de presque toutes les simulations du
domaine maritime. La présente version est le deuxième fédéré sonar présenté par le Canada au
TTCP. Le premier, Sonar 2.0, était un modèle de fidélité relativement faible basé sur les
équations sonar et les données de terrain. Il produisait des pistes de relèvement seul déjà
classifiées du point de vue surface/sous-marin. Sonar 2 s’est avéré insatisfaisant pour de
nombreuses tâches de simulation, mais il se prêtait à d’importantes améliorations.

Sonar 3 apporte plusieurs légères améliorations en matière de simulation et modifie de manière
importante la façon dont les pistes sont produites. Ces modifications amélioreront aussi
grandement la simulation dans le cas des réseaux de flanc ou remorqués.

Résultats

Sonar 3 améliore sensiblement la fidélité de simulation de Sonar 2 en traitant les signatures des
cibles en milieu océanique comme des signaux arrivant à un réseau sonar. Les données de
signature de chaque cible possible sont portées sur la carte de faisceaux du réseau, à laquelle sont
ensuite ajoutées les données de bruit.

La carte de faisceaux simulée est transmise à une bibliothèque de liens dynamiques (DLL)
externe qui analyse les données, effectue les détections et crée des pistes (suiveurs de signaux).
Toute DLL qui met en oeuvre la même interface peut maintenant être utilisée pour les détections
et les pistes, ce qui fait de Sonar 3 une plate-forme possible pour l’essai de nouveau algorithmes
dans un contexte de simulation.

Le modèle utilisé pour Sonar 3 représente le mieux les systèmes de réseaux de flanc et
remorqués.

vi DRDC Atlantic TM 2005-286

Portée

Sonar 3 offre un modèle sonar de fidélité satisfaisante pour des réseaux sonar dans le cadre de la
VMSA. L’utilisation d’une DLL distincte pour la séparation du code de détection et de pistage
donne au système la souplesse nécessaire pour tester des algorithmes de détection et de pistage
dans un environnement simulé.

Recherches futures

Le prochain fédéré sonar comprendra plusieurs perfectionnements touchant la modélisation sonar,
l’interface utilisateur et l’architecture logicielle, notamment :

• Tableaux des bruits de la navigation maritime et des bruits de surface, à charger à partir
de fichiers textes,

• Caractérisation plus uniforme des signatures passives,

• Inclusion d’une interface utilisateur graphique (GUI) pour indiquer les données produites
pour les cartes de faisceaux et permettre à un opérateur de marquer et de supprimer
manuellement des pistes,

• Inclusion d’au moins une capacité de sonar actif de base,

• Possibilité de modéliser de multiples systèmes au moyen d’un seule instance du fédéré,

• Transfert d’un grand nombre de classes généralement utiles du fédéré à la bibliothèque de
classes de l’utilitaire VCS pour réutilisation dans d’autres projets.

DRDC Atlantic TM 2005-286 vii

Table of contents

Abstract .. i
Résumé ... i
Executive summary .. iii
Sommaire... v
Table of contents ... vii
List of figures .. x
List of tables ... xi
Document revision history .. xii
User Guide... 1

Introduction... 1
Version history ... 1
Federate compliance... 2

Installation .. 2
System Requirements ... 2
Installation Instructions .. 3

Startup... 4
The command line .. 4
Command line arguments... 5
Configuration Files... 5

Sonar configuration file .. 6
Environment section ... 6
SonarConfiguration section .. 7
TrackerConfiguration Section .. 9
TargetProfiles section ... 10

Narrow-band auto-detector/signal follower configuration file 13
Configurations .. 14

Broad-band auto-detector/signal follower configuration file................................ 15
Configurations .. 16

Operation .. 18
Graphical User Interface .. 18
Debugging Output .. 18
Sonar Model ... 18
Auto-detector / signal follower... 18

Federate Behaviour ... 19
Time Management Policies .. 19
Models .. 19

Simulation Object Model.. 19

viii DRDC Atlantic TM 2005-286

Execution Management .. 20
Known Faults .. 20
Known Limitations ... 20
Bug Reports .. 21

Technical Description.. 22
Introduction... 22

Federate Compliance.. 22
Federate Description ... 23
Functional Description of Models .. 25

Tracks 25
Ambient Noise.. 25

The components of ambient noise .. 25
How the noise beam maps are calculated ... 26

Transmission loss ... 27
Simple 27
Thorpe 27

Java Classes.. 28
AmbientNoise ... 28
BBSignal 28
Complex 28
ComplexMatrix... 28
CoordinateConverter... 28
FFT 28
PassiveSonarModel... 28
Signal 29
Sonar 29
SonarSystem ... 29
SonarTarget... 29
SonarTrack.. 29
TargetData .. 29
TransmissionLossTable .. 29

Integration and Testing ... 30
Integration .. 30
Long-run... 30

Future Development.. 31
Related to sonar modeling.. 31
Related to software development ... 31

Utility class ... 31
Complex class ... 31
ComplexMatrix class .. 31
PassiveSonarModel class.. 32

DRDC Atlantic TM 2005-286 ix

Sonar 32
SonarSystem ... 32
TargetData .. 32
Transmission Loss Tables... 32

References ... 33
Annex A. Sample sonar configuration file.. 34
Annex B. Sample narrow-band tracker DLL configuration file ... 37
Annex C. Sample broad-band tracker DLL configuration file ... 39
Annex D. Transmission loss table file format and example file ... 41
Annex E. Noise data file format, conversion and usage ... 43

E.1 Conversion ... 44
E.2 Usage by Sonar 3.. 44

Annex F. UML class diagram .. 45
List of symbols/abbreviations/acronyms/initialisms ... 46
Distribution list.. 47

x DRDC Atlantic TM 2005-286

List of figures

Figure 1, a sample narrow-band signature. ... 11

Figure 2, a sample broad-band signature... 12

DRDC Atlantic TM 2005-286 xi

List of tables

Table 1, document revision history. .. xii

Table 2, federate compliance... 2

Table 3, system requirements. ... 2

Table 4, summary of the federate's simulation object model (SOM). .. 19

xii DRDC Atlantic TM 2005-286

Document revision history

Table 1, document revision history.

DATE VERSION SUMMARY OF CHANGES

1 April 2007 1.0 First release, covering version 3.0.1 of
the Sonar federate.

DRDC Atlantic TM 2005-286 1

User Guide

Introduction

Sonar 3.0 is the successor to DRDC – Atlantic’s previous sonar federates and represents a
significant increase in fidelity. It is compliant with VMSA 3.0.0 and models passive sonar
systems coupled with an auto-detector DLL.

The federate was developed in Java (SDK 1.4.2) using JBuilder Personal Edition 8.0, and Eclipse
3.0 M5. The array simulation was developed by Dr. Bill Roger in IDL [4][5] and ported to Java
by Dave Hackett and Allan Gillis. The FFT class was ported from the Pascal code developed by
Nils Haeck [9] and available under the Mozilla Public License 1.1. The complex number classes
were developed by Dave Hackett and Brad Dillman [7].

The auto-detector/signal follower DLL was developed by Fred Campaigne in ANSI C++ using
the Borland complier. The algorithms used by the detector were supplied by Dr. Bill Roger [5].

The federate code was based on that of Sonar 2 which traces its lineage to the TMA federate
written by Jason Murphy and the original Sonar federate written by Greg Denehy [8].

Version history

Version 1.0 was developed between 5 February 2003 and 2 May 2003. It included only a basic
simulation of broad-band using the Sonar equations [1].

Version 2.0 was completed on 11 July 2003 and included narrow-band simulation, ambient noise
calculations, and transmission loss tables. This is also a sonar equation model [1].

Version 3.0 development commenced in the fall of 2003 and finished in July 2004. This version
includes much more realistic modelling of the sonar system as a passive towed-array (although it
can be used for other types of systems). Note: The ability to model more than one Sonar system
with a single federate is lost in this version; every sonar system must now be modelled with its
own instance of Sonar 3.

Version 3.0.1 fixed some bugs found in testing, in particular with the transmission loss tables.

2 DRDC Atlantic TM 2005-286

Federate compliance

Table 2, federate compliance.

ITEM VERSION COMMENTS

Sonar Federate 3.0.1 Passive broad and narrow band
tracks, beam forming.

Programming language Java SDK 1.5 Developed with the Eclipse IDE.

RTI DMSO 1.3NGv4, DMSO 1.3NGv6,
and MäK RTI 2.4.

DMSO Java binding DLL must be
present in the PATH for inter-
operability with the MäK RTI.

Platform Windows 2000, XP Although the federate code is written
in Java, the auto-detector/signal
follower is a Windows only DLL.

Installation

System Requirements

Sonar 3 is a Windows only federate due to the DLL used for auto-detection and signal following.
Since it generates beam maps the memory and processing requirements increase as the number of
beams increases and the frequency separation (for narrow-band) decreases.

The federate depends on several third-party JAR files which are included in the federate release.
The auto-detector/signal follower DLL relies on several DLLs which are part of Borland’s set of
libraries; these are also included.

No attempt to determine the minimum system requirements has been made, but the lowest-end
machine it has been run on to date is show in Table 3, system requirements.

Table 3, system requirements.

ITEM MINIMUM REQUIRMENT

Make and model Dell Latitude D800

CPU Intel Centrino 1.7GHz

Memory 1.0 GB DDR RAM

Network connection 10/100 Switched Ethernet

Operating System Windows 2000 Professional

DRDC Atlantic TM 2005-286 3

This configuration was capable of handling beam maps of 43 beams x 2000 frequency bins with a
single target in real time. Larger beam maps, multiple sonar systems, or scenarios with many
targets may require a more powerful configuration.

Installation Instructions

The installation zip file includes all the required executables, DLLs, JAR files, and
documentation in their correct sub-directories. Simply unzip the file to the “federates” directory
on your system. For example, in the Virtual Combat Systems at DRDC-Atlantic you would unzip
the installation file to:

V:\DRDC-Simulations\apps\vmsa\federates

This will create the following directory structure:

 V:\DRDC-Simulations\apps\vmsa\federates\sonar-3.0.1-vmsfom-3.0.0

 |-> bin

 |-> doc

 |-> lib

 |-> src

“Bin” holds the configuration files, start batch file, signal follower and related DLLs, and any
out-put files for results and debugging.

“Doc” holds the Javadoc HTML files that describe the source code API, as well as the user guide
and this document (as PDF).

“Lib” holds all required JAR files, including the one for Sonar.

“Src” holds the Java source code for Sonar and the JNI portions of the code for the signal
follower DLL.

At the time of writing, a batch-file system is used at DRDC-Atlantic to run federations. Since
there are many ways to start a federation the entire process is not described here. However, there
are several command line arguments and environment variables that need to be set, and these are
described below in the “Start-up” section.

4 DRDC Atlantic TM 2005-286

Startup

Starting a Sonar 3 federate is normally done with a set of batch files. There are several systems
for doing this, but this document will only refer the method currently in use at DRDC Atlantic.
Sonar 3 is started in the same way as other non-GUI federates and it should be easy to adapt these
instructions to another system.

The command line

The command line needed to run Sonar 3 is:

java -Xms256m -Xmx512m -DVMSBC_ROOT=%VMSBC_ROOT%
-DVMSBC_JAVA_VERSION=%VMSBC_JAVA_VERSION%
-classpath %SONAR_CLASSPATH% Sonar.Sonar %CMD_LINE_ARGS%

Where, all the options should appear on a single line in your batch file. The environment
variables %VMSBC_ROOT%, %VMSBC_JAVA_VERSION%, %SONAR_CLASSPATH%,
and %CMD_LINE_ARGS% are set using the system of batch files that runs the command line.
The arguments are explained below:

• Xms256m : this argument is optional and tells the java virtual machine that it should
allocate 256MB of memory to it’s pool on start-up. This flag was required only when
using beam maps with 2000 frequency bins. The amount of memory to allocate can be
changed by altering the number; for example –Xms128m would allocate 128MB of
memory. For more information see Sun’s 1.4.2 SDK documentation.

• Xmx512m : this is also an optional argument, and tells the Java VM that it should not use
more than 512MB of memory in it’s allocation pool. This option is not usually required,
and could lead to “Out of Memory” errors if large beam maps are used.

• DVMSBC_ROOT : this argument specifies the root directory for the VMSBC base-
classes, which are used by all Java VMSA federates.

• DVMSBC_JAVA_VERSION : this argument specifies which version of the VMSBC
base classes are required. For this version of Sonar, version 1.0.2 is required.

• Classpath : the Java class path needed to include all the libraries for Sonar.

• Sonar.Sonar : the package and class for the entry point to the Sonar application. In the
case of Sonar 3 the package is called “Sonar”, as is the main class. The
%CMD_LINE_ARGS% environment variable is the set of command line arguments that
are passed to Sonar.

DRDC Atlantic TM 2005-286 5

Command line arguments

Sonar 3 takes a number of command-line arguments. These are:

• -fx : the name of the federation. It must be set or Sonar will not start.

• -fn : the name of the federate. This must be set or Sonar will not start.

• -fed : the name of the FED file to use. This is optional and the default is “vmsfom-
3.0.0.fed”.

• -som : the name of the SOM file to use. This is optional, and the default is
“SonarSOM.xml”.

• -d : the debug level. This is optional and the argument is any arbitrary number. Sonar
does not make much use of this flag, but the VMSA base-classes do report debug
information based on its value. In general, the higher the number, the more debug
information you will see.

An example command line argument string is:

-fx SONAR3_TEST –fn Sonar –fed c:\federation\vmsafom-3.0.0.fed –d 0

Configuration Files

There are three configuration files used by this federate. The first specifies information and
options for the Java Sonar simulation, the other two give parameters for narrow-band and broad-
band operation of the auto-detector/signal follower DLL. The DLL configuration files are passed
to it by Sonar 3 and are parameters of Sonar’s configuration file. The VMSA execution manager,
VMSEM, passes sonar’s configuration file name to it.

It is good practice to include the full path as part of the name. If the full path is not included the
federate will attempt to load the configuration files from the current working directory. This can
lead to confusion, especially if more than one federation is being configured.

All configuration files are XML and schemas are provided for validation. These schemas should
be used with a good XML editor to reduce errors in the configuration. While the schemas cannot
catch every possible error they do prevent missing elements and out-of-range values. They are
also included in the “XML_Schemas” directory of the installation.

6 DRDC Atlantic TM 2005-286

Sonar configuration file

The schema for validating Sonar configurations is “Sonar3Configuration.xsd”, and you will find
it in the “XML_Schemas” directory of your Sonar 3 installation. An example configuration file is
included as Appendix A.

Sonar configuration files have four sections:

• Environment: contains all environmental parameters; sound speed, ocean depth, etc.

• SonarConfiguration: has all the information needed to describe the sonar system.

• TrackerConfiguration: contains the configuration file names for the DLL, and other
parameters for the Java simulation that are directly related to the operation of the DLL.

• TargetProfiles: this section has acoustic signature information for the various composite
entities in the simulation.

Environment section

The environment section MUST have the following information:

SoundSpeed: the speed of sound in the water, in metres/second. The sonar model does not use
profiles, only a single average value.

OceanDepth: the average depth of the ocean at the scenario location, in metres. This value is
only used for calculating transmission loss by the Thorpe method.

TransmissionLossMethod: the method to use for calculating transmission loss. There are 3
possibilities: Simple, Thorpe, and Table Lookup. The methods are described fully in the
Technical Description section.

TransmissionLossTable: if the transmission loss method is “TableLookup” then you need at
least one of these. The element has 3 attributes:

• MinFreq: the minimum valid frequency for the data in the table.

• MaxFreq: the maximum valid frequency for the data in the table.

• FileName: the name of the file containing the table (including the path).

The transmission loss file format is given in Appendix D.

AmbientNoiseMethod: the method to use for determining ambient noise levels. There are two
options: Static, and Calculate. If Static is chosen then a single level is used for every frequency.

DRDC Atlantic TM 2005-286 7

If calculate is used then the noise is calculated as described in the Technical Description section.
All of the tags used with the “calculate” method are ignored if the “static” method is selected.

Depending on the choice of ambient noise method there are four optional pieces of information
that might be needed in the environment section. If the “Static” ambient noise method is chosen
then you must also give:

AmbientNoiseLevel: the level, in dB, for ambient noise at all frequencies. This is ignored if the
method is “Calculate”.

If the “Calculate” method is chosen the following information must be in the file:

ShippingLevel: a parameter used to characterize distant shipping traffic. The valid values are
integers from 1 to 9 and the sound level increases with shipping level.

SeaState: this is used when calculating the contribution from surface noise. The valid range is
integers from 1 to 7. Higher sea states result in more noise.

RainState: a parameter that describes the amount of rain falling. The valid values are (in order
of increasing noise) NoRain, Intermediate, Moderate, and Heavy.

There is one optional tag that may be included (once) when using the “calculate” method:

NoiseFile: this is used to define a noise data file that will be used to generate noise beam maps.
The tag has 4 attributes:

• Name: the name of the file, including the path.

• nBeams: the number of beams per record.

• nFrequencies: the number of frequency bins per record.

• nRecords: the number of records in the file.

The file format for noise files is described in Appendix E.

SonarConfiguration section

All information for this section must be present:

SonarSystem: this tag has two attributes, “Name”, and “Model”. The name is the VMSA object
name for sonar system component entities, and the model value must be set to “Passive”. This
information is not really required anymore and this tag will probably be removed in the next
incremental version of Sonar.

8 DRDC Atlantic TM 2005-286

Broad Band: this is the information required to set the frequency rage for broad band operation.
The XML tag has two attributes: Frequency and Bandwidth. The frequency attribute is the
central frequency for the band, in Hz. The Bandwidth attribute is the total range of interest, also
in Hz. The total range used is Frequency – ½ Bandwidth to Frequency + ½ Bandwidth. Note: it
is very important that the lowest frequency is not zero or less.

MinFrequency: the lowest frequency that will be considered for narrow-band operation, in Hz.

MaxFrequency: the highest frequency that will be considered for narrow-band, in Hz.

IgnoreOwnship: a flag to say if the sonar’s parent ship should be included in the signals added to
the beam map; true or false. Note: there is a bug in version 1.2 of the VMSA Java base classes
that breaks the signal processing in Sonar 3 when this tag is set to “false”. Until this bug is
corrected IgnoreOwnship must be set to “true” only!

WatchSide: the side to look at. Valid options are “Both”, “Port”, and “Starboard”. For a towed
array you should use both, but when simulating a flank array you should pick the corresponding
side. Remember: to simulate a flank array, run two separate sonar federates, each with a different
WatchSide. Targets not on the given side of the SonarSystem will not be processed and added to
the beam map. Note: this parameter MUST match the “Side” value in the tracker
configuration file or else the PassiveSonarTrack objects will be created with the wrong bearing
value.

TimeStep: for HLA time management Sonar has a 1 second look-ahead, but the beam maps do
not have to be updated at the same frequency. The time step causes beam map updates to happen
on multiples of the look-ahead. For example, if the time step is 4 the beam maps will only be
calculated every 4 simulation seconds.

TotalBeams: the total number of beams produced by the array.

Averages: the signal follower DLL can be set to average successive beam maps together. This
improves signal detection. This parameter tells the DLL how many beam maps to average
together; the minimum is 1 (no averaging).

NumSensors: the number of sensors in the array.

SensorSeparation: the distance between sensors, in metres.

ForwardBeamOffset: some towed arrays allow you to steer the forward beam. This parameters
allows you to say how far off center it should point, in degrees.

CenterBeamAngle: the angle the central beam is pointing, in degrees.

SignalBearingSigma: used to introduce some variability in the bearing when applying signals to
the beam maps. The value only affects narrow-band processing.

StartWindowBeam: if you want the DLL to only consider part of the beam map this sets the
start of the beam range. It is an integer between 0 and Total Beams –1. Normally you should set
this to 0.

DRDC Atlantic TM 2005-286 9

NumWindowBeams: the number of beams to use if you only want the DLL to look at part of the
beam map. Normally this should be set to the same number as Total Beams.

StartWindowFreq: the starting frequency bin for the DLL when only considering a section of
the beam map. For normal use this should be set to 0.

NumWindowFreqs: how many frequency bins the DLL should consider when considering only
a section of the beam map. Normally this should be set to the total bandwidth / frequency
separation.

BeammapFileName: for debugging or analysis purposes you sometimes need to have a record of
the beam maps that have been processed by the DLL. If you choose to print-out any of these
maps they are stored in this file. If the file exists it is over-written, not appended to. These files
can be very large (especially when operating in narrow-band).

PrintNoiseBeammap: print-out the noise only beam maps; true or false.

PrintSignalBeammap: print-out the signal only beam maps; true or false.

PrintTotalBeammap: print out the summed noise and signal beam maps; true or false.

PrintNormalisedBeammap: print-out the normalized beam maps; true or false.

TrackerConfiguration Section

All information in this section MUST be present.

PrintTracks: a flag to say if track information should be printed to STDOUT (the console
window).

GenerateTrackType: what kind of tracks should we look for? “BroadBand”, “NarrowBand”, or
“Both”.

TrackerBBConfigFile: the name of the broad-band configuration file for the signal follower. A
file with this name must exist in the federate’s working directory.

TrackerNBConfigFile: as above, but for narrow-band.

10 DRDC Atlantic TM 2005-286

TargetProfiles section

This section must be present in the configuration file and must have at least one target defined.
Each target must have an entry in this section if it could potentially be heard by sonar. You can
define as many target profiles as you like (each profile is the acoustic signature). At run time
these are assigned by matching the “Name” attribute of the “Target” element to CompositeEntity
“Name” attributes. If a composite entity cannot be matched to any target profiles then it cannot be
detected by Sonar.

Target: each of these tags gives a passive acoustic signature to set of composite entities. The tag
has a single attribute and contains two child tags. The attribute is:

• Name: the composite entity names that should use this profile. The name may be very
specific or very general. For example, a value of “SeaSurface.Military.Warship” will
match any composite entity name starting with that string, while
“SeaSurface.Military.Warship.Frigate.Australia.FFG.Adelaide Class.HMAS Adelaide”
will only match that one specific composite entity.

Each “Target” tag must have at least one “Signal” and at least two “BBSignal” child tags.

Signal: these tags are used to characterize the signature for narrow-band processing. At least
one, but usually three or more, of these “tones” define the signature. Signal tags have three
attributes:

• Frequency: the central frequency in Hz.

• Bandwidth: the frequency range for which the level is valid, in Hz.

• Level: the spectral level of the signal, in dB ref. signal bandwidth.

For example, a frequency of 120 Hz, a bandwidth of 200 Hz, and a level of 112 dB is handled as
if the target signal was 112 dB at every frequency from 20 Hz to 220 Hz. The graph in figure 1
shows an exaggerated sample narrow-band signature to illustrate the concept.

DRDC Atlantic TM 2005-286 11

Narrow band signature

0

20

40

60

80

100

120

140

0 100 200 300 400 500

Frequency (Hz)

Le
ve

l (
dB

)

60 Hz, bandwidth 2 Hz
200 Hz, bandwidth 200 Hz
300 Hz, bandwidth 210 Hz

Figure 1, a sample narrow-band signature.

BBSignal: these tags are used for defining the signature for broad-band processing. At least
two of these must be included as the level for any given frequency is found by interpolation
between points. Essentially each BBSignal tag represents a single point on the level v.s.
frequency curve defining the signature. These tags have two attributes:

• Frequency: the frequency of the point, in Hz.

• Level: the spectral level for the point, in dB, ref. a 1 Hz band.

An example signature is shown in figure 2.

12 DRDC Atlantic TM 2005-286

broad-band signature

108

110

112

114

116

118

120

122

0 50 100 150 200 250 300 350

Frequency (Hz)

Le
ve

l (
dB

)

Figure 2, a sample broad-band signature.

In the next version of Sonar these two signature definitions will be consolidated.

DRDC Atlantic TM 2005-286 13

Narrow-band auto-detector/signal follower configuration file

The narrow band configuration file schema file is called “SAPSConfigure.xsd”. The parameters
for configuration files are detailed below. Note: the beam maps are all calculated in power space,
not dB, but this is transparent to the end user.

DataSource: a name to use as a prefix for the log file name.

NoiseDistributionMinimumSNR: the lowest signal to noise ratio (SNR) value in the beam map
that should be considered noise. A good typical value to use is 0.1.

NoiseDistributionMaximumSNR: the highest SNR value in the beam map that should be
considered noise. A good typical value to use is 15.

HistogramBinWidth: unless you are familiar with the internal workings of the signal follower,
you should not adjust this parameter. A good default value to use is 0.1. As part of its internal
calculations the signal follower creates a noise distribution which comes from integrating a
histogram of the noise. This parameter gives some control over this histogram by indirectly
allowing the number of cells to be set. The equation for the number of cells is:

 (NoiseDistributionMaximumSNR – NoiseDistributionMinimumSNR) / HistogramBinWidth

TurnThreshold: this threshold sets the minimum difference in ownship heading that should be
considered a turn, in degrees. A good default value to use is 0.1. While in a turn the signal
follower does not create new sonar tracks, the noise distribution is not calculated, auto-detection
is off, and the variance for signal followers does not grow. When this type of signal follower is
used in other applications this parameter is really the difference in heading between the towing
ship and the array. With this federate there is never any difference since the ship and array
motions are not modeled independently.

BeamMapAverages: part of the beam map processing involves averaging the maps over time to
reduce the influence of noise. Set this to any positive integer and that many maps will be
averaged.

Trace: “0” for “off”, “1” for “on” (do not use true/false). When Trace is on, the DLL will write
detailed debugging information to a file in the same directory as the DLL. This file will contain
information about the state of every running signal follower for every update cycle. This is really
included only for developers working on the DLL and isn’t very useful for end users.

LogResults: “0” for off, “1” for on (do not use true/false). When LogResults is on, the DLL
writes information about the state of the signal followers for every update cycle to a file in the
same directory as the DLL. This file can be useful for analyzing the behaviour of the signal
followers, and is at a level that is useful for end users.

NConfigurationElements: the signal followers can run with several configurations. Each
configuration must have a configuration section in the file. If you use more than one
configuration it is entirely possible that multiple tracks will be generated for any target.

14 DRDC Atlantic TM 2005-286

Configurations

Every configuration is defined in it’s own section, enclosed in a pair “Configuration” tags. The
information inside these sections is:

Delay: this should be set to zero. It allows the DLL to skip a number of update cycles for the
auto-detector/signal follower before actually processing the beam maps. This can be useful when
using real noise file with known anomalies near its beginning.

PFA: Probability of false alarm. Good values for this parameter are between 0.01 and 0.001, and
the allowable range is 0 to 1.0. This parameter influences when signal followers are assigned to
potential tracks. The higher the PFA, the more likely a weak signal will be tracked, but the more
false tracks will be created.

M: this parameter goes with N. The signal follower only creates a track when it detects a contact
M times out of N consecutive updates. For example, an M of 10 with N 12 means the contact
must appear 10 times out of 12 consecutive updates before a track is created.

N: see M. Must always be ≥ M.

BeamWindow: a good initial value for this parameter is one. Over time a signal will move across
beams, so the signal follower needs to handle the case where a signal might move into an adjacent
beam. This parameter allows the size of the window to be set; the value is in “beams” on either
side of centre. For example, if the signal follower was considering a signal in beam 23, a beam
window of 1 means that on the next update cycle peaks in beams 22, 23, and 24 will be
considered by the follower.

FrequencyWindow: a good initial choice for this parameter is one. A signal may move in
frequency over time, as well as in space. Because of this, the signal follower needs to consider
adjacent frequency bins when following a signal, just as it needs to consider adjacent beams.
This parameter allows the number of bins to either side of the one from the last update cycle to be
set.

DetectorAlpha: the detector uses exponential averaging on peaks it finds. This parameter is part
of that calculation and should normally be set to 0.1. This is a detail of the internal workings of
the DLL that is not generally useful to the end user.

StateAverages: how many values of state variables the signal followers will use to smooth the
bearing and frequency rates used in their calculations. The state variables include bearing,
bearing rate, frequency, frequency rate, and SNR.

EstimatorNBeams: should normally be set to 5. Since a signal may move across beams between
update cycles the signal followers need to be able to look in adjacent beams to find the signal.
This parameter lets you set how many beams to either side the followers may consider.

EstimatorNFrequency: should normally be set to 5. Since a signal may also alter in frequency
over time the signal followers must be allowed to look at adjacent frequency

DRDC Atlantic TM 2005-286 15

EstimatorBounds: in degrees, and good default value to use is 10. When the auto-detector finds
a signal it may not be on the best peak in the area of interest. This parameter controls the range of
the beam map that the detector will search for a stronger peak before starting up a new signal
follower.

LMDThreshold: not used for narrow band. While this parameter must be in the file for it to
parse correctly, it isn’t actually used by this version of the DLL. It will be removed in future
versions.

EndFireOffset: should be set to 5. This parameter is an adjustment that is used to move the
bearing of signals directly ahead or astern of the sonar system. This is necessary as the
processing algorithms make use of 1/sin(arrival angle) in several places, so there is a singularity
for these signals. The value is in degrees.

PixelsFromCentre: not used. While this parameter must be in the file for it to parse correctly, it
isn’t actually used by this version of the DLL. It will be removed in future versions.

HertzPerPixel: not used. While this parameter must be in the file for it to parse correctly, it isn’t
actually used by this version of the DLL. It will be removed in future versions.

NSignalEstimatorAverages: not used. While this parameter must be in the file for it to parse
correctly, it isn’t actually used by this version of the DLL. It will be removed in future versions.

Side: this parameter tells the signal follower which side the sonar is watching. It can be set to
“Port”, “Starboard”, and “Both” by choosing the number 0 for port, 1 for starboard, and 2 for
both. This value must agree with the “WatchSide” tag value in the Sonar configuration file or the
signal follower will not perform properly. Internally the signal follower always creates two
PassiveSonarTrack objects per detection, this flag simply tells it to drop the known spurious side.
Note: the signal follower knows nothing about how the beam map was created, so this value
MUST match the “WatchSide” tag in the Sonar configuration file or else the PassiveSonarTrack
objects will have an incorrect bearing. For example, if the Sonar configuration specified “Both”,
targets from port and starboard will be processed and added to the beam map. If the signal
follower is set to “Port” it will still detect targets from both sides because they were added to the
beam map, but all tracks will be created with the port bearing and the starboard bearing will be
discarded.

Broad-band auto-detector/signal follower configuration file

The broad-band configuration file schema file is called “SAPSConfigure.xsd”. The parameters
for configuration files are:

DataSource: a name to use as a prefix for the DLL’s log and debug file names.

TurnThreshold: the signal follower does not create new sonar tracks while the parent ship is in a
turn. This threshold sets the minimum heading rate that should be considered a turn, in
degrees/second. With the current motion model any heading variation really is a turn, but in the
future more detailed motion models may cause heading variations unrelated to turning the ship.
In testing a setting of 0.1 worked well.

16 DRDC Atlantic TM 2005-286

BeamMapAverages: part of the beam map processing involves averaging the maps over time to
reduce the influence of noise. Set this to any positive integer and that many maps will be
averaged.

Trace: “0” for “off”, “1” for on (do not use true/false). When Trace is on the DLL will write
detailed debugging information to a file in the same directory as the DLL. This file will contain
information about the state of every running signal follower for every update cycle. This is really
included only for developers working on the DLL and isn’t very useful for end users.

LogResults: “0” for “off”, “1” for “on” (do not use true/false). When LogResults is on the DLL
writes information about the state of the signal followers for every update cycle to a file in the
same directory as the DLL. This file can be useful for analyzing the behaviour of the signal
followers, and is at a level that is

NConfigurationElements: the signal followers can run with several configurations. Each
configuration must have a configuration section in the file.

Configurations

Every configuration is defined in it’s own section, enclosed in a pair “Configuration” tags. The
information inside these sections is:

Delay: this should be set to zero. It allows the DLL to skip a number of update cycles auto-
detector/signal follower before actually processing the beam maps. This can be useful when using
real noise file with known anomalies near it’s beginning.

DetectorThreshold: must always be set to 1. This parameter is meant for the trackers when
dealing with the general case of broad-band signals. Sonar 3 handles it in a specific way, and this
parameter must be set to 1 for the federate to function correctly.

M: this parameter goes with N. The signal follower only creates a track when it detects a contact
M times out of N updates. For example, an M of 10 with N 12 means the contact must appear 10
times out of 12 updates before a track is created.

N: see M. This must always be ≥ M.

BeamWindow: a good initial value for this parameter is one. Over time a signal will move across
beams, so the signal follower needs to handle the case where a signal might move into an adjacent
beam. This parameter allows the size of the window to be set; the value is in “beams” on either
side of centre. For example, if the signal follower was considering a signal in beam 23, a beam
window of 1 means that on the next update cycle peaks in beams 22, 23, and 24 will be
considered by the follower.

DetectorAlpha: the detector uses exponential averaging on peaks it finds. This parameter is part
of that calculation and should normally be set to 0.1. This is a detail of the internal workings of
the DLL that is not generally useful to the end user.

DRDC Atlantic TM 2005-286 17

StateAverages: how many values of state variables the signal followers will use to smooth the
bearing and frequency rates used in their calculations. The state variables include bearing,
bearing rate, frequency, frequency rate, and SNR.

EstimatorNBeams: should normally be set to 5. Since a signal may move across beams between
update cycles the signal followers need to be able to look in adjacent beams to find the signal.
This parameter lets you set how many beams to either side the followers may consider.

EstimatorBounds: in degrees, and good default value to use is 10. When the auto-detector finds
a signal it may not be on the best peak in the area of interest. This parameters controls the range
of the beam map that the detector will search for a stronger peak before starting up a new signal
follower.

LMDThreshold: must always be set to 1. This parameter is meant for the detector when dealing
with the general case of broad-band signals. Sonar 3 handles it in a specific way, and this
parameter must be set to 1 for the federate to function correctly.

EndFireOffset: should be set to 5. This parameter is an adjustment that is used to move the
bearing of signals directly ahead or astern of the sonar system. This is necessary as the
processing algorithms make use of 1/sin(arrival angle) in several places, so there is a singularity
for these signals. The value is in degrees.

NSignalEstimatorAverages: not used. While this parameter must be in the file for it to parse
correctly, it isn’t actually used by this version of the DLL. It will be removed in future versions.

Side: this parameter tells the signal follower which side the sonar is watching. It can be set to
“Port”, “Starboard”, and “Both” by choosing the number 0 for port, 1 for starboard, and 2 for
both. This value must agree with the “WatchSide” tag value in the Sonar configuration file or the
signal follower will not perform properly. Internally the signal follower always creates two
PassiveSonarTrack objects per detection, this flag simply tells it to drop the known spurious side.
Note: the signal follower knows nothing about how the beam map was created, so this value
MUST match the “WatchSide” tag in the Sonar configuration file or else the PassiveSonarTrack
objects will have an incorrect bearing. For example, if the Sonar configuration specified “Both”,
targets from port and starboard will be processed and added to the beam map. If the signal
follower is set to “Port” it will still detect targets from both sides because they were added to the
beam map, but all tracks will be created with the port bearing and the starboard bearing will be
discarded.

18 DRDC Atlantic TM 2005-286

Operation

Graphical User Interface

There is no GUI for this federate.

Debugging Output

There are three different sources for debugging info; the federate and base classes, the auto-
detector / signal follower DLL, and the Sonar model itself. The federate and base class
debugging is controlled with the command line flag “-d x” and is fairly common amongst VMSA
federates; the higher the value of ‘x’ the more debug information is produced. Please see the base
class Javadocs located in the doc directory of the federate distribution for more information.

Sonar Model

The sonar model allows you to print various beam maps to a text file. This is very useful for
determining problems with detection or for comparing to detected tracks. The configuration file
controls which (if any) beam maps will be printed (see section 3.3.1 for details). The maps that
can be printed are:

• Noise only,

• Signals only,

• Noise and signals summed,

• The final normalized beam map.

The file for these maps grows quickly as data is written to it on every iteration of the simulation
loop. This is especially true when operating in narrow-band where beam maps can contain
thousands of frequency bins per beam.

Auto-detector / signal follower

While the auto-detector / signal follower DLL does provide debugging output, it is meant for
development use only. The output is neither meant for, nor particularly useful for, the end use of
this federate and is not documented here.

DRDC Atlantic TM 2005-286 19

Federate Behaviour

Time Management Policies

Sonar is both time regulated and time constrained. The look-ahead is hard-coded to 1 second to
ensure the positions are updated regularly, but you can change the time between calculating beam
maps by using the <TimeStep> tag in the configuration file.

Models

Simulation Object Model

Table 4, summary of the federate's simulation object model (SOM).

CLASSES PUBLISH SUBSCRIBE

CompositeEntity

SeaSurface X

SubSurface X

ComponentEntity

SonarSystem X

Track

RelativeSonarTrack X

INTERACTIONS

ExecutionManagment X X

InitialiseFederate X X

CreateEntity X X

ExecutionManagementError X X

TerminateIteration X X

TerminateFederation X X

RemoveEntity X X

20 DRDC Atlantic TM 2005-286

Execution Management

Sonar systems need to be defined as ComponentEntities in the execution manager script files. A
sample script file for the VMSEM execution manager is below:
<ComponentEntity Type="SensorSystem.SonarSystem"
Name="Sub_01_Sonar_01" FederateName="Sonar"
ConfigFile="narrow_config.xml">
 <ComponentEntityAttribute AttributeName="ComponentName">
 <AttributeEntry AttributeValue="SensorSystem.SonarSystem..."
AttributeType="s"/>
 </ComponentEntityAttribute>
</ComponentEntity>

The name attribute of the opening <ComponentEntity> tag will be used when naming tracks, so it
must be unique. The convention at DRDC Atlantic has been to name it with the parent name as a
prefix (as shown above: Sub_01_Sonar_01).

Since every sonar system MUST be simulated with a separate federate the “FederateName”
attribute of the <ComponentEntity> tag must be unique. For example if we were simulating a
flank array sonar on a submarine that submarine will have two ComponentEntity entries; the first
one could use a federate name of “Sonar_sub1_portside” and the second
“Sonar_sub1_starboradside”.

The “ConfigFile” attribute is required and is what the federate uses to find its configuration file.
A file of this name must exist in the working directory of the federate.

Known Faults

Setting a window of interest in the signal follower DLL has not been used or tested to date.

The random number seed does not get set correctly from the VMSEM script file. However, we
have been unable to get even the VMSEM to correctly display a random number seed entered in
the script. We have reported this as a bug in the base classes.

There may be a memory leak that is only visible in very long (11 hours+) federation runs. We are
still investigating this, but it seems to have no practical impact on simulation.

Known Limitations

Due to the Auto-detector/ signal follower DLL used by Sonar 3 it can only simulate one system at
a time. This is a major change from version 2 which can model any number of sonar systems.

Sonar does not do anything with the save and restore synchronization points. The functions are
implemented (as they must be when using the VMSA base classes) but are empty.

DRDC Atlantic TM 2005-286 21

Bug Reports

Please report any bugs found with this federate to:

Allan Gillis
DRDC Atlantic
allan.gillis@drdc-rddc.gc.ca

22 DRDC Atlantic TM 2005-286

Technical Description

Introduction

Sonar 3.0 is the successor to DRDC Atlantic’s previous sonar federates and represents a
significant increase in fidelity. It is compliant with VMSA 3.0.0 and models passive sonar
systems coupled with an auto-detector DLL.

The federate was developed in Java (SDK 1.4.2) using JBuilder Personal Edition 8.0, and Eclipse
3.0 M5. The array simulation was developed by Dr. Bill Roger in IDL [4][5] and ported to Java
by Dave Hackett and Allan Gillis. The FFT class was ported from the Pascal code developed by
Nils Haeck [9] and available under the Mozilla Public License 1.1. The complex number classes
were developed by Dave Hackett and Brad Dillman [7].

The auto-detector/signal follower DLL was developed by Fred Campaigne in ANSI C++ using
the Borland complier. The algorithms used by the detector were supplied by Dr. Bill Roger [5].

The federate code was based on that of Sonar 2 which traces its lineage to the TMA federate
written by Jason Murphy and the original Sonar federate written by Greg Denehy [8].

Federate Compliance
The following table summarizes the compliance for this federate.

 Version Comments

Sonar 3 Federate 3.0

Programming Language Java 1.4.2 (signal follower
DLL ANSI C++)

VMS-FOM 3.0.0

RTI DMSO V1.3NG4

Platform Windows

DRDC Atlantic TM 2005-286 23

Federate Description
This sonar federate significantly raises the fidelity over that of Sonar 2. It uses signal
follower software from Bill Roger (a C++ DLL connected via JNI) to develop tracks
from a simulated array beam map. Transmission loss is via Thorpe's [3] equation or a
table; noise follows the standard Wentz tables [1].

The signal follower algorithms are the same as those used in The Sonar Test-Bed and are
based upon towed array sonar algorithms. The beam is also a representation of a towed
array, so in essence this is a towed array sonar model. Turning off the port or starboard
signal followers via a configuration file allows it to simulate flank arrays.

While the beam pattern represents a towed array, none of the other characteristics of a
towed array are modelled. For example, the towed array doesn’t bend, has no length,
always follows the same heading as it’s parent ship, and is considered to be at the co-
ordinate centre of it’s parent.

The primary role of the Sonar 3 federate is to create beam-maps for the autodetector/
signal follower DLL. The simulation process is almost identical for narrow and broad
band, although the resulting beam maps are very different. The process both follow is:

Create a beam map filled with noise

Iterate through every SeaSurface and SubSurface Composite Entity

Determine if this

entity should be

Determine which target
signature to use

Find the relative bearing
to the target

Based on the bearing and signature add
the target’s noise to a signal beam map

Add the noise and
signal beam maps

Normalize the result

Pass the beam map to the DLL Update ownship and sensor
information for the DLL

24 DRDC Atlantic TM 2005-286

Sonar subscribes to all SeaSurface and Subsurface CompositeEntities and considers every
one of them when creating the signal beam map. If you have configured the system to
only watch the port side then entities on the starboard side will be skipped, and vice
versa. You may also exclude the sonar system’s parent entity with the appropriate
configuration file option.

Normalization varies between narrow-band and broad-band. For broad band the
normalization routine looks for the lowest intensity level in the map and then divides all
other cells by that number. This results in broad-band maps with a minimum value of
1.0.

For narrow band normalization is “perfect split-window”, meaning that the average
intensity level is computed from the noise map alone. Once the noise and signals are
added each cell is divided by this average. This is essentially what a real split-window
normalizer does except that a real one doesn’t have the luxury of knowing the difference
between a signal and noise. The main difference between our normalization and a real
split-window normalizer is that the artefacts caused by normalization near a signal will
not occur in our system.

DRDC Atlantic TM 2005-286 25

Functional Description of Models

Tracks
The auto-detector / signal follower DLL is responsible for creating and updating tracks.
As soon as the detector decides it has lost a track it is deleted from the federation
simulation and the internal track table.

Ambient Noise
The ambient noise model is based on Wentz’s noise equations with corrections from
NUSC [2] and DRDC-Atlantic. The noise modeling is handled by two classes:
SonarSystem, and AmbientNoise.

The AmbientNoise class is only responsible for generating noise values (in dB) for the
various components of ambient noise. The SonarSystem class loads (from the
configuration file) all parameters used to calculate the noise components, calls the
functions of AmbientNoise to get values for the components, and creates beam maps of
the noise. These beam maps are used by PassiveSonarModel to create a total signal and
noise beam map.

The components of ambient noise

The ambient noise is computed based on many individual components. These are:

• Turbulence noise,

• Shipping noise,

• Surface noise,

• Thermal noise,

• Rain noise.

For details see the Javadocs which are included in the /doc directory of the federate
distribution.

26 DRDC Atlantic TM 2005-286

How the noise beam maps are calculated

This version of Sonar operates in both narrow-band and broad-band modes. The broad-
band beam map is one dimensional (1 cell per beam) while the narrow-band beam map is
two dimensional (1 row per beam, 1 cell per frequency). The number of beams and
frequencies are controlled by the configuration file parameters.

The noise beam maps are calculated using a Gaussian distribution. Since the beam maps
contain intensity values the dB levels are converted before applying the distribution
equation. The equation for noise intensity in any given beam map cell is:

2)(GN •= σ

Where:

 N is the noise intensity,
 G is the next number in the normal Gaussian sequence,
 σ is the standard deviation.

The standard deviation comes from the computed ambient noise level by:

10/10L=σ

Where:

 σ is the standard deviation,
 L is the computed ambient noise level (dB).

For narrow-band each cell is assigned a single noise value. For broad-band a number of
values are added together over the frequency range to get the total noise in each beam.
For example, if the broad-band frequency range is 10 Hz to 2500 Hz and 200 frequencies
are set (via the configuration file) each beam will have a sum of 200 noise values evenly
spaced between 10 and 2500 Hz inclusive.

DRDC Atlantic TM 2005-286 27

Transmission loss
Transmission loss is handled in one of three ways:

• Simple: a compromise equation for transmission loss as a function of range.
There is no frequency dependence or consideration of the transition from
spherical and cylindrical spreading.

• Thorpe: calculates TL from spherical and/or cylindrical spreading, and
absorption [3].

• Table lookup: the TL comes from tables of transmission loss vs range. Several
tables can be used to represent different slices of frequency. There is no
interpolation between frequencies.

In all cases the source and receiver depths are not used.

Simple

The equation for the simple method is:

)(15 10 rangeLOGTL •=

Where:

 TL is the transmission loss in dB,
 Range is the distance from the source to the sonar system.

Thorpe

This method includes contributions to TL from spreading and absorption. The equation
for transmission loss is:

 TL = spreading loss + absorption loss.

The spreading loss is calculated by:

)(20 10 rangeLOGspreading •=

When the range is less than the ocean depth, or:

)/(10)(20 1010 depthrangeLOGdepthLOGspreading •+•=

when it is greater.

Where:

 spreading is the loss due solely to spreading in dB,
 depth is the ocean depth in metres,
 range is the distance between the source and the sonar system in metres.

28 DRDC Atlantic TM 2005-286

Java Classes
Each class used in the federate is described below. Only a brief description is given, but
much more detailed information can be found in the Javadocs which are in the doc
directory of the federate distribution.

AmbientNoise

This class holds data, and provides functions for calculating the ambient noise levels in
the sea. It does not provide methods to create beam maps; this is handled by the
SonarSystem class.

BBSignal

The BBSignal class is used to hold signal information for broad-band calculations. In
this federate the only signals we consider are targets, so each instance is effectively a
broad-band signature.

Complex

This class represents complex numbers and has many functions for operating on them.
This class is used extensively by the beam-forming routines in PassiveSonarModel.

ComplexMatrix

This represents matrices of complex numbers. It also includes the ability to multiply one
matrix by another, but no other functions.

CoordinateConverter

This class has utilities for dealing with the coordinate system. In particular it has
functions to calculate relative bearings and so on. See the Javadocs for more details.

FFT

This class performs forward and inverse Fast Fourier Transforms for complex number
series (defined using the Complex class defined above).

PassiveSonarModel

This class is the back-bone of the federate. It does all the beam-forming, decides which
signals to include and which to exclude, and hands-off completed beam maps to the
signal follower DLL for processing.

DRDC Atlantic TM 2005-286 29

Signal

Signal is used for characterizing narrow-band signatures.

Sonar

This class is the federate part of the simulation. It encapsulates the main() entry point to
the application and defines the expected methods as specified by the VMSA architecture.
It handles all communications with the RTI.

SonarSystem

This class holds all the information that describes the sonar system and also provides
several utility functions. In particular it calculates noise maps and loads all the
configuration file settings. The PassiveSonarModel class has a Sonar System and makes
heavy use of its data and functions.

SonarTarget

This class is used to represent composite entities, and contains their acoustic signature
information.

SonarTrack

This class represents sonar tracks and inherits from PublishedRelativeSonarTrack.
Objects of this class are created by the Tracker class when called back by the signal
follower DLL.

TargetData

This class is used to hold target signature information for composite entities in the
simulation. A name attribute is used to match the target data to composite entities when
generating beam maps.

TransmissionLossTable

This class is responsible for loading transmission loss data from a text file. It also
provides a function to interpolate the data and give transmission loss for a particular
range. The class has data members that specify its frequency range.

30 DRDC Atlantic TM 2005-286

Integration and Testing

Integration
Sonar 3 has been tested with the following federates:

• VMSEM 1.8.1

• Motion 2.3.0

• Horizon HLA Plug-in 2.5

In all cases the scenario was very simple; a single target was placed at a range of 5
kilometres. We used the Horizon Helm to steer both ownship and the target.

Sonar 3 does respond correctly to the “End Federation” signal from VMSEM.

Long-run
We also ran an extended test without Horizon participating. This test ran from 16:30 to
07:45 the next morning. It successfully completed 3 loops for a total federation time of
about 11 hours. While the Windows 2000 task manager showed available memory
decreasing over time there was no perceivable performance problems with the computer.
The available memory returned to it’s pre-simulation level once the federation was
ended.

DRDC Atlantic TM 2005-286 31

Future Development
While developing and tuning this federate many opportunities for future expansion were
identified. These are described below, grouped into two general categories of things that
will improve the sonar simulation, and those that will help future software development.

Related to sonar modeling
Ambient noise calculation: it would be better to load the surface noise and shipping
noise tables from a file. Right now the only way to change this data is to alter the
AmbientNoise class and recompile.

Active sonar: this version only handles passive sonar systems. An extension to active
sonar would greatly enhance its usefulness.

Signals: currently narrowband and broadband signals are handled separately. These
could be collapsed into a single representation of a target profile. This would simplify
the sonar configuration file somewhat, and eliminate a class.

Operator interface: now that Sonar produces beam maps we are in a position to include
real GUI elements that could be used by sonar operators. For the next version we are
tentatively planning to include LOFAR and FRAZ displays. With these displays an
operator could designate contacts manually and also vet the contacts generated by the
auto detector.

Related to software development

Utility class

There are several instances where identical functions are defined in many different
classes. These functions should be collected into a single utility class, or even split-out
into a new reusable package.

Complex class

There are some redundancies in this class’ functions. It could use a clean-up and would
fit nicely into a new Utility class.

ComplexMatrix class

Another excellent candidate to move into a Utility package or class.

32 DRDC Atlantic TM 2005-286

PassiveSonarModel class

There are many functions in the PassiveSonarModel that would be good candidates to put
in a utility class. They are:

• DbtoI: converts dB values to intensity.

• ItoDB: converts intensity values to dB.

• MaxInArray: finds the maximum value in a one dimensional array.

• AbsAngles: converts a one-dimensional array to it’s absolute values.

• Bessel_I

• COSD

• ACOSD

Sonar

Sonar is currently using both log4j and it’s older log file routines. We should consolidate
these.

SonarSystem

There are many things in this class that should more properly belong elsewhere. In
particular the environmental parameters like noise and sound speed should be broken out
into a new class. It also implements its own version of Log10, DbtoI, and ItoDB, and
these should be removed and placed in a utility class.

TargetData

Currently the narrowband and broadband signatures are handled separately. This should
be consolidated in the next version.

Transmission Loss Tables

The current format is based on output from an old FORTRAN program. This should be
migrated to an XML format that includes some meta-data to indicate where the
information comes from, and to make the format consistent with the test of the Sonar 3
configuration files.

DRDC Atlantic TM 2005-286 33

References

[1] Urick, Robert J., “Principles of Underwater Sound”, 3rd Edition, McGraw Hill, New York,
1983.

[2] Walt Sadowski, Richard Katz, and Kathleen McFadden, "Ambient Noise Standards for
Acoustic Modeling and Analysis," NUSC Technical Document 7265, 3 August 1984.

[3] Tyler, Gordon D., “The Emergence of Low-Frequency Active Acoustics as a Critical
Antisubmarine Warfare Technology”, Johns Hopkins APL Technical Digest, Volume 13,
Number 1, 1992.

[4] W.A. Roger, “Evaluation of the Probabilistic Data Association Filter in a Realistic Sonar
Environment”, DREA TM 94/201, May 1994.

[5] W.A. Roger, private communication.

[6] Dave Hackett, unpublished manuscript.

[7] Brad Dillman and Dave Hackett, unpublished manuscript.

[8] Greg Denehy, private communication.

[9] Nils Haeck , “FFT Library”, http://www.simdesign.nl/fft.html, SimDesign, March 2003.

34 DRDC Atlantic TM 2005-286

Annex A. Sample sonar configuration file
<SonarConfigurationFile>

 <Environment>

 <AmbientNoiseMethod>Calculate</AmbientNoiseMethod>

 <AmbientNoiseLevel>70</AmbientNoiseLevel>

 <ShippingLevel>5</ShippingLevel>

 <SeaState>5</SeaState>

 <RainState>Moderate</RainState>

 <NoiseFile Name=”noise.dat” nBeams=”215” nFrequencies=”408” nRecords=”878”/>

 <TransmissionLossMethod>Simple</TransmissionLossMethod>

 <TransmissionLossTable MinFreq="50" MaxFreq="250" FileName="TL_50_250.sap"/>

 <TransmissionLossTable MinFreq="251" MaxFreq="950" FileName="TL_250_950.sap"/>

 <OceanDepth>2000.0</OceanDepth>

 <SoundSpeed>1500.0</SoundSpeed>

 </Environment>

 <SonarConfiguration>

 <SonarSystem Name="SensorSystem.SonarSystem" Model="Passive"/>

 <TotalBeams>43</TotalBeams>

 <StartWindowBeam>0</StartWindowBeam>

 <NumWindowBeams>43</NumWindowBeams>

 <Averages>1</Averages>

 <StartWindowFreq>0</StartWindowFreq>

 <NumWindowFreqs>201</NumWindowFreqs>

 <NumSensors>48</NumSensors>

 <SensorSeparation>2.0</SensorSeparation>

 <ForwardBeamOffset>0.0</ForwardBeamOffset>

 <CenterBeamAngle>90.0</CenterBeamAngle>

 <WatchSide>Both</WatchSide>

 <IgnoreOwnship>true</IgnoreOwnship>

 <FrequencySeparation>0.1</FrequencySeparation>

 <SignalBearingSigma>2.0</SignalBearingSigma>

 <MaxFrequency>210.0</MaxFrequency>

 <MinFrequency>190.0</MinFrequency>

 <TimeStep>4</TimeStep>

 <BroadBand Bandwidth="2489" Frequency="1245"/>

 <BeammapFileName>beammaps.txt</BeammapFileName>

 <PrintNoiseBeammap>false</PrintNoiseBeammap>

 <PrintSignalBeammap>false</PrintSignalBeammap>

 <PrintTotalBeammap>false</PrintTotalBeammap>

 <PrintNormalisedBeammap>false</PrintNormalisedBeammap>

 </SonarConfiguration>

DRDC Atlantic TM 2005-286 35

 <TrackerConfiguration>

 <PrintTracks>false</PrintTracks>

 <TrackerNBConfigFile>NBTrial.xml</TrackerNBConfigFile>

 <TrackerBBConfigFile>BBTrial.xml</TrackerBBConfigFile>

 <GenerateTrackType>NarrowBand</GenerateTrackType>

 </TrackerConfiguration>

 <TargetProfiles>

 <Target Name="SubSurface.Military.Submarine">

 <Signal Frequency="200" Level="115" Bandwidth="200"/>

 <Signal Frequency="300" Level="110" Bandwidth="210"/>

 <Signal Frequency="60" Level="120" Bandwidth="2"/>

 <BBSignal Frequency="10" Level="90"/>

 <BBSignal Frequency="300" Level="90"/>

 <BBSignal Frequency="2500" Level="90" />

 </Target>

 <Target Name="SeaSurface.NonMilitary.FishingBoat">

 <Signal Frequency="150" Level="150" Bandwidth="100"/>

 <Signal Frequency="250" Level="145" Bandwidth="100"/>

 <Signal Frequency="350" Level="140" Bandwidth="100"/>

 <Signal Frequency="60" Level="20" Bandwidth="2"/>

 <BBSignal Frequency="10" Level="90"/>

 <BBSignal Frequency="300" Level="90"/>

 <BBSignal Frequency="2500" Level="90" />

 </Target>

 <Target Name="SeaSurface.Military.Warship">

 <Signal Frequency="400" Level="125" Bandwidth="400"/>

 <Signal Frequency="200" Level="135" Bandwidth="2"/>

 <Signal Frequency="60" Level="120" Bandwidth="2"/>

 <BBSignal Frequency="60" Level="120"/>

 <BBSignal Frequency="200" Level="135"/>

 <BBSignal Frequency="2500" Level="90" />

 </Target>

 <Target Name="SeaSurface.NonMilitary.ContainerShip">

 <Signal Frequency="300" Level="140" Bandwidth="400"/>

 <Signal Frequency="60" Level="120" Bandwidth="2"/>

 <BBSignal Frequency="10" Level="90"/>

 <BBSignal Frequency="300" Level="90"/>

 <BBSignal Frequency="2500" Level="90" />

 </Target>

 <Target Name="SeaSurface.NonMilitary.Liner">

 <Signal Frequency="300" Level="140" Bandwidth="400"/>

 <Signal Frequency="60" Level="120" Bandwidth="2"/>

36 DRDC Atlantic TM 2005-286

 <BBSignal Frequency="10" Level="90"/>

 <BBSignal Frequency="300" Level="90"/>

 <BBSignal Frequency="2500" Level="90" />

 </Target>

 </TargetProfiles>

</SonarConfigurationFile>

DRDC Atlantic TM 2005-286 37

Annex B. Sample narrow-band tracker DLL configuration
file

<?xml version="1.0"?>

<NarrowBandConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="http://wallaby/xmldocs/SAPSConfigure.xsd
">

 <DataSource>SH5_PARTA_HEND_5RA.drea_V2b</DataSource>

 <NoiseDistributionMinimumSNR>0.1</NoiseDistributionMinimumSNR>

 <NoiseDistributionMaximumSNR>8.0</NoiseDistributionMaximumSNR>

 <HistogramBinWidth>0.1</HistogramBinWidth>

 <TurnThreshold>0.1</TurnThreshold>

 <BeamMapAverages>1</BeamMapAverages>

 <Trace>1</Trace>

 <LogResults>1</LogResults>

 <NConfigurationElements>1</NConfigurationElements>

 <Configuration>

 <Delay>0</Delay>

 <PFA>0.1</PFA>

 <M>10</M>

 <N>12</N>

 <BeamWindow>2</BeamWindow>

 <FrequencyWindow>2</FrequencyWindow>

 <DetectorAlpha>0.1</DetectorAlpha>

 <StateAverages>10</StateAverages>

 <EstimatorNBeams>7</EstimatorNBeams>

 <EstimatorNFrequency>7</EstimatorNFrequency>

38 DRDC Atlantic TM 2005-286

 <EstimatorBounds>10.0</EstimatorBounds>

 <LMDThreshold>1.0</LMDThreshold>

 <EndFireOffset>5.0</EndFireOffset>

 <PixelsFromCentre>2</PixelsFromCentre>

 <HertzPerPixel>0.1</HertzPerPixel>

 <NSignalEstimatorAverages>1</NSignalEstimatorAverages>

 <Side>2</Side>

 </Configuration>

</NarrowBandConfiguration>

DRDC Atlantic TM 2005-286 39

Annex C. Sample broad-band tracker DLL configuration
file

<?xml version="1.0"?>

<BroadBandConfiguration xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="http://wallaby/xmldocs/SAPSConfigure.xsd
">

 <DataSource>VMSA</DataSource>

 <TurnThreshold>0.1</TurnThreshold>

 <BeamMapAverages>1</BeamMapAverages>

 <Trace>1</Trace>

 <LogResults>1</LogResults>

 <NConfigurationElements>1</NConfigurationElements>

 <Configuration>

 <Delay>0</Delay>

 <DetectorThreshold>1.0</DetectorThreshold>

 <M>4</M>

 <N>5</N>

 <BeamWindow>2</BeamWindow>

 <DetectorAlpha>0.1</DetectorAlpha>

 <StateAverages>5</StateAverages>

 <EstimatorNBeams>7</EstimatorNBeams>

 <EstimatorBounds>10.0</EstimatorBounds>

 <LMDThreshold>1.0</LMDThreshold>

 <EndFireOffset>5.0</EndFireOffset>

 <NSignalEstimatorAverages>1</NSignalEstimatorAverages>

 <Side>2</Side>

40 DRDC Atlantic TM 2005-286

 </Configuration>

</BroadBandConfiguration>

DRDC Atlantic TM 2005-286 41

Annex D. Transmission loss table file format and
example file

Transmission loss files are plain text with a very specific format. They were originally generated
with a FORTRAN program and the format reflects this.

Each file is valid over a specific spectrum. This spectrum is not found in the files and must be
specified in the “TransmissionLossTable” tags in the Sonar configuration file. Any number of
tables can be used. Please see the configuration file section for more information.

The first part of the transmission loss file is a header that has no meaning to Sonar, but describes
where the data originally came from. There can be any number of lines in the header.

The last line before the data must have the single word “CURVE” on it, starting in the first
column. This line separates the header from the loss v.s. range data.

Each line below the “CURVE” line contains two values: range from receiver to target in metres,
and transmission loss at that range in dB. The range value must start in column 7 and the last
digit for range must be in column 13. The loss value must start in column 20 and the last digit
for loss must be in column 26.

An example noise file is shown below:

42 DRDC Atlantic TM 2005-286

Label 1

Transmission Loss curve 2from file C:\My Documents\tri98_150_50.tl
CURVE
 250.000 44.5000
 500.000 47.7000
 750.000 49.6400
 1000.00 51.0700
 1250.00 52.2100
 1500.00 53.1700
 1750.00 54.0000
 2000.00 54.7400
 2250.00 55.4100
 2500.00 56.0100
 2750.00 56.5700
 3000.00 57.0900
 3250.00 57.5700
 3500.00 58.0300
 3750.00 58.4600
 4000.00 58.8600
 4250.00 59.2500
 4500.00 59.6100
 4750.00 59.9600
 5000.00 60.3000
 5250.00 60.6200
 5500.00 60.9200
 5750.00 61.2200
 6000.00 61.5000
 6250.00 61.7800
 6500.00 62.0400

DRDC Atlantic TM 2005-286 43

Annex E. Noise data file format, conversion and usage

The noise data files are binary, big endian, 32 bit floating point numbers. They are not self
describing. Each file has a number of records; each record is comprised of beams, and each beam
has some number of frequency bins.

The arrangement of the data is:

 Record 1
 Beam 1
 Frequency bin 1 … Frequency bin N
 Beam 2
 Frequency bin 1 … Frequency bin N
 …
 Beam N
 Frequency bin 1 … Frequency bin N
 Record 2
 Beam 1
 Frequency bin 1 … Frequency bin N
 Beam 2
 Frequency bin 1 … Frequency bin N
 …
 Beam N
 Frequency bin 1 … Frequency bin N
 …
 Record N
 Beam 1
 Frequency bin 1 … Frequency bin N
 Beam 2
 Frequency bin 1 … Frequency bin N
 …
 Beam N
 Frequency bin 1 … Frequency bin N

For example, the first four bytes in the file is the noise value for the first frequency bin, in the first
beam, of the first record. The last four bytes are for the last frequency bin, of the last beam, of
the last record.

44 DRDC Atlantic TM 2005-286

E.1 Conversion

The files we have at DRDC Atlantic are not in this format natively. Our files are self-describing
(in the IDL environment) and are arranged in little-endian format (Intel architecture native). To
use one of these files the self describing header must be removed and the byte order of the data
must be reversed.

The header is plain text and can be removed with a hex editor. The byte order can be changed
using the Convert class in the Sonar jar file after the header is removed. To run the conversion
utility:

java –classpath sonar-3.0.0-vmsfom-3.0.0.jar Sonar.Convert inputFile outputFile

Where:

 Sonar-3.0.0-vmsfom-3.0.0.jar is the Sonar 3 jar file in the installation “lib” directory.

 InputFile is the name of the little-endian file to convert.

 OutputFile is the desired name of the big-endian output file.

Example: to convert the little-endian file “raw_noise.dat” the command line is:

java –classpath sonar-3.0.0-vmsfom-3.0.0.jar Sonar.Convert raw_noise.dat converted.dat

E.2 Usage by Sonar 3

The noise data in these files is not unprocessed pressure or intensity. To create these files the
recorded ocean noise has been processed to remove known signals and then normalized. As a
result this data cannot be used directly, but instead is used as weightings for the noise values
calculated from Wentz curves (AmbientNoiseMethod = Calculate). Without a noise data file the
“calculate” method uses a Gaussian distribution to provide fluxuations.

To use a noise file a single “NoiseFile” tag must appear in the Environment section of the Sonar
configuration file. Since the files are not self-describing this tag must also specify the number of
records, beams, and frequency bins. Please see the section on configuration for more details.

The noise data is used without consideration for the direction of the beams or the real-world
frequencies that each frequency bin relates to. The model simply grabs a random starting beam
and frequency cell and reads the data required from there. Every subsequent use of the data
advances the starting position by one record. The data is self-consistent with regards to beams,
frequency cells, and time (record) so the statistics will match the real ocean environment much
more closely than a Gaussian distribution does.

DRDC Atlantic TM 2005-286 45

Annex F. UML class diagram

cd Main Components

TransmissionLossTable

+ minFrequency: double
+ maxFrequency: double
+ tableFileName: String
- range: ArrayList = new ArrayList()
- transmissionLoss: ArrayList = new ArrayList()

+ getTransmissionLoss(double) : double
+ LoadTable() : void

Tracker

+ broadbandTracks: HashMap = new HashMap()
+ narrowbandTracks: HashMap = new HashMap()
+ footPointPosition: double ([]) = new double[3]
+ footPointPositionError: double ([]) = new double[3]
+ generatorObjectInstanceName: String
- narrowConfig: String
- broadConfig: String
+ printTracks: boolean

+ BBInitial ize(char[]) : void
+ BBFinalize() : void
+ SetBBStartBeam(int) : void
+ SetBBBeams(int) : void
+ SetBBTime(double) : void
+ SetBBSoundVelocity(float) : void
+ SetBBSensorHeading(float) : void
+ SetBBShipSpeed(float) : void
+ SetBBSensorSeparation(float) : void
+ SetBBBeamSeparation(float) : void
+ SetBBShipHeading(float) : void
+ SetBBAverages(short) : void
+ SetBBTotalBeams(int) : void
+ SetBBSinHalfBeamWidthEstimate(float) : void
+ SetBBIntegrationTime(float) : void
+ SetBBBeamOffset(float) : void
+ SetBBFreqs(int) : void
+ SetBBStartFreq(int) : void
+ SetBBFreqSeparation(float) : void
+ SetBBMinFreq(float) : void
+ SetBBMaxFreq(float) : void
+ SetBBTotalFreqs(int) : void
+ SetBBNumSensors(short) : void
+ ProcessBBBeamMap(float[]) : void
+ NBInitial ize(char[]) : void
+ NBFinalize() : void
+ SetNBStartBeam(int) : void
+ SetNBBeams(int) : void
+ SetNBTime(double) : void
+ SetNBSoundVelocity(float) : void
+ SetNBSensorHeading(float) : void
+ SetNBShipSpeed(float) : void
+ SetNBSensorSeparation(float) : void
+ SetNBBeamSeparation(float) : void
+ SetNBShipHeading(float) : void
+ SetNBAverages(short) : void
+ SetNBTotalBeams(int) : void
+ SetNBSinHalfBeamWidthEstimate(float) : void
+ SetNBIntegrationTime(float) : void
+ SetNBBeamOffset(float) : void
+ SetNBFreqs(int) : void
+ SetNBStartFreq(int) : void
+ SetNBFreqSeparation(float) : void
+ SetNBMinFreq(float) : void
+ SetNBTotalFreqs(int) : void
+ SetNBNumSensors(short) : void
+ ProcessNBBeamMap(float[]) : void
+ Tracker(String, String, boolean, String)
+ Finalizer() : void
+ InitBB() : void
+ InitNB() : void
+ AddBBTrack(int, double, float, float, float, float, boolean) : void
+ AddNBTrack(int, double, float, float, float, float, float, float, boolean) : void

TargetData

name: String = ""
+ signals: LinkedList = new LinkedList()
+ bbsignal: BBSignal

+ TargetData(String)
+ setName(String) : void
+ getName() : String
+ addSignal(double, double, double) : void
+ addSignal(Signal) : void
+ addBBSignal(BBSignal) : void

PublishedRelativeSonarTrack
SonarTrack

+ SonarTrack()
+ isValid() : boolean
getAttributeValue(String) : byte[]
+ getSA() : SuppliedAttributes
~ update(double) : SuppliedAttributes

ReflectedCompositeEntity
SonarTarget

+ targetData: TargetData

+ SonarTarget()

PublishedComponentEntity
SonarSystem

wm: WorldModel = new WorldModel()
~ mapPosition: double ([]) = new double[3]
+ accuracy: double = 1e-8
+ bearingVariance: double = 0.1
+ frequencyVariance: double = 5.0
+ ambientNoiseMethod: String = "Static"
+ ambientNoiseLevel: double
+ ambientNoiseStandardDeviation: double = 75
+ shippingLevel: int = 1
+ seaState: int = 1
+ rainState: String = "Intermediate"
+ bandwidth: double = 300
+ broadbandBandwidth: double
+ broadbandFrequency: double
+ broadbandFrequencyMin: double
+ broadbandFrequencyMax: double
+ random: Random
+ timeStep: int = 1
+ startBeam: int = 0
+ numBeams: int
+ averages: int = 1
+ totalBeams: int = 43
+ startFreq: int = 0
+ numFreqs: int
+ numSensors: int
+ soundVelocity: double = 1500.0
+ sensorHeading: double = 91.2
+ shipSpeed: double = 12.0
+ sensorSeparation: double = 2.0
+ beamSeparation: double = -0.047619
+ shipHeading: double
+ integrationTime: double = 1.0
+ beamOffset: double
+ minFreq: double
+ maxFreq: double
+ freqSeparation: double
+ signalBearingStdDeviation: double
+ centerBeamAngle: double = 90.0
+ narrowbandMaxSignal: float = 64000.0F
+ narrowbandDetections_MinRequired: int = 3
+ narrowbandDetections_OutOf: int = 5
+ narrowbandDetections_LoseAfter: int = 3
+ narrowbandDetections_DeleteAfter: int = 10
+ broadbandDetections_MinRequired: int = 15
+ broadbandDetections_OutOf: int = 20
+ broadbandDetections_LoseAfter: int = 3
+ broadbandDetections_DeleteAfter: int = 10
+ generateTrackType: String = "Both"
+ componentName: String = ""
+ federateName: String
+ modelName: String = ""
+ knownTargets: HashMap = new HashMap()
+ broadbandDetections: HashMap = new HashMap()
+ narrowbandDetections: HashMap = new HashMap()
+ ambientNoise: AmbientNoise = new AmbientNoise()
+ transmissionLossMethod: String
+ transmissionLossTables: LinkedList = new LinkedList()
+ oceanDepth: double = 2000.0
+ trackCount: int = 0
+ tracker: Tracker
- trackerNBConfigFileName: String
- trackerBBConfigFileName: String
- trackerPrintFlag: boolean
+ beammapFileWriter: FileWriter
+ printNoiseBeammap: boolean = false
+ printSignalBeammap: boolean = false
+ printTotalBeammap: boolean = false
+ printNormalisedBeammap: boolean = false
+ watchSide: String

+ Log10(double) : double
+ PowerSum(double) : double
+ InvPowerSum(double) : double
+ SonarSystem(double, String, String, String, Vector)
+ final ize() : void
parseConfiguration(String) : void
loadEnvironmentConfiguration(Document) : void
loadSonarConfiguration(Document) : void
loadTrackerConfiguration(Document) : void
loadTargetProfiles(Document) : void
+ getAmbientNoise(double) : double
~ SpreadingLoss(double) : double
+ AbsorptionLoss(double, double) : double
+ getTransmissionLoss(double, double, double) : double
+ calculateLatLongAzimuth(double, double, double, double) : double[]
+ calcRangeBearing(double[], double[]) : double[]
+ isTimeStep(double) : boolean
+ update(double) : SuppliedAttributes
+ getNBGaussianNoiseMap() : float[]
+ getBBGausianNoiseMap() : float[]

virtualship.federate.VMSEMFederate
Runnable

Sonar

~ federationName: String = "TTCP"
~ federateName: String = "Sonar"
~ fedFileName: String = "vmsfom-3.0.0.fed"
~ fedSOMName: String = "SonarSOM.xml"
~ debug: boolean = false
~ debugLevel: int = 0
~ standalone: boolean = false
~ log: Logger
~ main: Thread
- sonarTargets: LinkedList = new LinkedList()
- registeredObjectClasses: LinkedList = new LinkedList()
- sonarSystem: SonarSystem
- passiveSonarModel: PassiveSonarModel
- out: Fi leOutputStream
+ logFile: PrintStream

+ Sonar(String, String, String, String, boolean, int)
final ize() : void
+ createCompositeEntity(double, String, String, String, Vector) : void
+ save() : void
+ restore() : void
+ preSimulate() : void
~ System.out.println() : int

Signal

+ bearing: double
+ frequency: double
+ dbLevel: double
+ bandwidth: double
+ frequencyMin: double
+ frequencyMax: double

+ Signal(double, double, double)

Passiv eSonarModel

~ sonarSystem: SonarSystem
~ beamFormerFrequency: double ([])
~ beamAngles: double ([])
~ all_dbyl: double ([])
~ taylorWindow: double ([])
~ bf_coef: Complex ([][][])
~ sin_half_bw_estimate: double
+ random: Random
+ coordConvert: CoordinateConverter = new CoordinateC...

+ Log10(double) : double
+ DBtoI(double) : double
+ ItoDB(double) : double
+ PassiveSonarModel(SonarSystem)
+ initializeTrackFollower() : void
+ finalizeTrackFollower() : void
- beamformer_coef(double[], double[], int) : Complex[]
- MaxInArray(double[]) : double
- AbsArray(double[]) : double[]
- bessel_I(double) : double
- Taylor_Window(double, int) : double[]
- Form_Signal(double, int, double) : Complex[]
- COSD(double) : double
- ACOSD(double) : double
- BeamForm(Complex[], ComplexMatrix) : double[]
- Form_Sig_BeamMap(Signal) : double[]
- Form_Sig_BinMap(double) : double[]
- AddBBSignal(BBSignal) : double[]
+ generateBroadbandTracks(LinkedList, double) : void
- AddNBSignal(Signal) : double[]
+ generateNarrowbandTracks(LinkedList, double) : void
+ flagLostTracks(double) : void
- SumFreqsPerBeam(int, int) : double[]
- NormalizeBBBeamMap(float[]) : float[]

BBSignal

+ bearing: double
+ BB_SNR_Array: double ([])
+ BB_Freq_Array: double ([])

+ BBSignal(double[], double[])
~ BBSignal()
+ addData(double, double) : void
- sortData() : void

AmbientNoise

~ shippingFrequencyBands: int = 38
~ shippingLevels: int = 9
~ shippingNoiseTable: double ([][]) = {{10.0, 57.3, 6...
~ surfaceFrequencyBands: int = 47
~ seaStates: int = 7
~ surfaceNoiseTable: double ([][]) = {{10.0, 50.9, 5...

- Log10(double) : double
+ turbulenceNoise(double) : double
+ shippingNoise(double, int) : double
+ surfaceNoise(double, int) : double
+ thermalNoise(double) : double
+ rainNoise(double, String) : double

+targetData

+tracker

+ambientNoise

-passiveSonarModel

-sonarSystem

+bbsignal

~sonarSystem

46 DRDC Atlantic TM 2005-286

List of symbols/abbreviations/acronyms/initialisms

GUI Graphical User Interface
DLL Dynamic Link Library
DMSO Defence Modelling and Simulation Office
DND Department of National Defence
DRDC Defence Research and Development Canada
DSTO Defence Science and Technology Organisation
HLA High Level Architecture
JAR Java Archive
R&D Research & Development
RTI Run Time Infrastructure
SDK Software Development Kit
TTCP The Technical Cooperation Program
VMSA Virtual Maritime Systems Architecture

DRDC Atlantic TM 2005-286 47

Distribution list

Document DRDC Atlantic TM 2005-286:

LIST PART 1: Internal Distribution by Centre:

2 (1 CD and 1 Hard copy) DRDC Atlantic Library File Copies
3 (CDs) DRDC Atlantic Library (Spares)
1 Author

6 TOTAL LIST PART 1

LIST PART 2: External Distribution by DRDKIM

1 (CD) NDHQ/DRDKIM
1 (CD) Dr. Shane Canney, DSTO Edinburgh, PO Box 1500 Edinburgh, SA 5111, Australia

2 TOTAL LIST PART 2

8 TOTAL COPIES REQUIRED

This page intentionally left blank.

 DRDC Atlantic mod. May 02

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

 1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a contractor's
report, or tasking agency, are entered in section 8.)

DRDC Atlantic

 2. SECURITY CLASSIFICATION
 (overall security classification of the document

including special warning terms if applicable).

UNCLASSIFIED

 3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
 abbreviation (S,C,R or U) in parentheses after the title).

Sonar 3 VMSA Federate : user Guide and Technical Description

 4. AUTHORS (Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Gillis, Allan D.

 5. DATE OF PUBLICATION (month and year of publication of
 document)

April 2007

 6a. NO. OF PAGES (total
 containing information Include
 Annexes, Appendices, etc).

 47 (approx.)

 6b. NO. OF REFS (total cited
 in document)

 9

 7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

Technical Memorandum

 8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include address).

Defence R&D Canada – Atlantic
PO Box 1012
Dartmouth, NS, Canada B2Y 3Z7

 9a. PROJECT OR GRANT NO. (if appropriate, the applicable research

and development project or grant number under which the document was
written. Please specify whether project or grant).

11BK

 9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written).

 10a ORIGINATOR'S DOCUMENT NUMBER (the official document

number by which the document is identified by the originating activity.
This number must be unique to this document.)

 DRDC Atlantic TM 2005-286

 10b OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

 11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed

by security classification)
(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document

Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience may be
selected).

 DRDC Atlantic mod. May 02

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is
highly desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication
of the security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R),
or (U). It is not necessary to include here abstracts in both official languages unless the text is bilingual).

This federate provides a medium fidelity sonar model for Virtual Maritime Systems
Architecture (VMSA) high level architecture (HLA) simulations. The model best represents
towed array systems, but can be configured to model flank arrays as well. The Sonar model
is coupled with an auto-detector/signal follower that creates VMSA Sonar tracks without an
operator.

While the federate is written in Java, the signal follower is provided only as a compiled
Windows DLL. This limits the federate to the Windows operating system, either Windows
2000 or XP.

This document describes the federate software, how to use it, and how to integrate the
federate into DRDC Atlantic s VMSA execution system. As well, the software design and
technical details are explained.

This document covers version 3.0.1 of the Sonar federate.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a
document and could be helpful in cataloguing the document. They should be selected so that no security classification is required.
Identifiers, such as equipment model designation, trade name, military project code name, geographic location may also be included.
If possible keywords should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and
that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the classification of each should be
indicated as with the title).

Sonar; VMSA; Federate; HLA; Virtual Maritime Systems Architecture; User Guide; Technical
Description; Manual

This page intentionally left blank.

